ENTRANCE EXAMINATION FOR ADMISSION, MAY 2013. M.Tech. (GREEN ENERGY TECHNOLOGY) COURSE CODE: 307

Regis	eter Number :		
٠		. -	Signature of the Invigilator (with date)
		<u></u> _	

COURSE CODE: 307

Time: 2 Hours

Max: 400 Marks

Instructions to Candidates:

- 1. Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- 2. Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each of the question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET <u>using HB pencil</u>.
- 4. Avoid blind guessing. A wrong answer will fetch you -1 mark and the correct answer will fetch 4 marks.
- 5. Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- 7. Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

1.	If a balanced coin is flipped twice, what is the probability of getting at least one head												
	·(A)	4			(B)	1/2		(C)	1 4		(D)	2 3	
2.	Let	$f(x) = \frac{1}{n}$	$\frac{1}{\pi i}$, $0 \le x$	° < 1	$_{ m I}l$ be	a prob	ability d	ensity	function.	The pr	obabil	ity distribution	ì.
•	func	tion f (x) is										
	(A)	$\frac{x}{\pi l}$			(B)	$\frac{1}{\pi l}$		(C)	x πl		(D)	$\frac{\pi l}{x}$	
3.	The	expect	ation va	lue	of a	consta	nt b is				٠	,	
	(A)	0			(B)	1		(C)	1/ _b		(D)	b.	
4.	The	binomi	inal dist	trib	ution	has	numb	er of pa	arameters	3	-	•	
	(A)	One			(B)	Two		(C)	Three		(D)	Four.	
5.	Wha	at is 2%	of 7%?					•	-				
	(A)	0.014	%		(B)	0.14%	·	(C)	1.4%		(D)	14%.	
6.	If A	2 – A +	I = O tl	hen	the i	nverse	if A is						
•	(A)	A+ I	· •,		(B)	A		(C)	A-I		(D)	I-A .	
7.	If ro		he equa	ation	1 X 2	- b x +	c = 0	be to	wo consec	cutive i	nteger	cs, then $b^2 - 4c$	3
	(A)	1 – 2			(B)	3		(C)	2	•	(D)	- 1. .	
8.	If f(z	$\mathbf{x}) = \int_{\mathbf{z}}^{\mathbf{x}}$	log+ d	t fo	r all	positiv	e x then	f '(x) is			•		
	(A)	x	÷		(B)	1 x		(C)	$\log x$:	(D)	$x \log x$	
9.	•	<i>D u</i> .	.						ation, the			•	
	(A)	$\binom{a}{b}$	$\begin{pmatrix} -b \\ -a \end{pmatrix}$	r	(B)	$\begin{pmatrix} a \\ -b \end{pmatrix}$	$\binom{b}{a}$	(C)	$\frac{1}{a^2+b^2}\left(\begin{array}{c} \\ \end{array}\right)$	$\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$	(D)	$\begin{pmatrix} -a & b \\ b & a \end{pmatrix}.$	<i></i>
10.	A fu	nction	f is Rei	mar	ın in	tegrabl	e on [a, l	o) if		٠			
	(A)	only	$\int_a^{-b} f dx$	exi	ist	Ĭ		(B)	only \int_{-a}^{b}	f dx e	xist		
	(C)	$\int_a^{-b} f$	$dx \neq \int_{-\infty}^{1}$	f	dx			(D)	$\int_a^{-b} f dx$	$\chi = \int_{-a}^{b}$	f dx.	•	

11.	There are 20 people go to the conference					people are selected t sible?
	(A) 5	(B)	80	(C)	4845	(D) 48450.
12.	The Eigen value of	$\frac{d}{dx}(\sin(x))$:)) is			
•	(A) 1	(B)	0	(C)	-1	(D) <i>i</i> .
13.	Natural logarithm	of -1 is				
	(A) 0	(B)	-1	(C)	i	(D) $i\pi$.
14.	If $y = (x + 3)^2$, then	(-2 x -6)	² must equal to	which	n of the following	ş
	(A) -4y ²	(B)	4 y	(C)	-2y ²	(D) 2y.
15.	The variance of Poi	sson dist	tribution is giv	en by		
	(A) $\sigma^2 = \lambda$	(B)	$\sigma^2 = \frac{1}{\lambda}$	(C)	$\sigma^2 = \frac{-1}{\lambda}$	(D) $\sigma^2 = 1 - \frac{1}{\lambda}$.
16.	The average incommore than 3 calls is		rate is 4 per	minute	e. The probabilit	ty that there are no
	(A) $\frac{71}{3} e^{-4}$	(B)	e ⁻⁶	(C)	$-\frac{71}{3}$	(D) $-e^4$.
17.	The set of real num	ber is			*.	
•	(A) Bounded abov	⁄e		(B)	Unbounded abo	ove
	(C) Finite set			(D)	Countable set.	
18.	Composite number	n is				
	(A) A prime num	ber and	n > 1	(B)	Non- prime nu	mber and $n < 1$
	(C) Non-prime n	umber aı	nd n > 1	(D)	A prime number	er and $n < 1$.
19.	If S is a set of real	numbers	, and C1 and C	are t	wo last upper bo	unds of S, then
	$(A) C_1 = C_2$	(B)	$C_1 > C_2$	(C)	$C_1 < C_2$	(D) $C_1 \neq C_2$
20.	A finite set is					
	(A) Open set	•		(B)	Closed set	
	(C) Uncountable	set		(D)	Empty set .	

tic modulus is								
1.25.								
ÿ								
e is								
e.								
Which of the following power stations is mainly used to cover peak load on the system?								
opower plant.								
At a measuring frequency of 10 ¹² Hz the dielectric constant of a material will be due to								
•								
n inductor and								
 (3) Used in voltage stabilizers (4) This exhibits the reverse effect of electrostriction 								
Which of the above statements is/are correct?								

40.	44 115	at is the function of heavy water in a n	uciear	reactor?					
	(A)	It serves as a coolant	•	r					
	(B)	It serves as a moderator							
	(C)	It serves as a coolant as well as a mo	derate	or					
	(D)	It serves as a neutron absorber.							
29.	Wha	at does application of centrifugal air co	mpres	sors lead to?					
	(A)	Large frontal area of aircraft							
•	(B)	Higher flow rate through the engine							
	(C)	Higher aircraft speed							
	(D)	Lower frontal area of the aircraft.							
30.	If re	eflection coefficient for voltage be 0.6, the	he vol	tage standing wave ratio (VSWR) is					
	(A)	0.66 (B) 4	(C)	1.5 (D) 2.					
31.		measurement of Hall coefficient of ier gives the information about	a sem	niconductor with one type of charge					
	(A)	Sign of charge carrier							
	(B)	Density of charge carrier	•						
	(C)	Both sign and density of charge carri	er	•					
	(D)	Mass of the charge carrier.		,					
32.	The standard atmospheric pressure is 762 mm of Hg. At a specific location, the barometer reads 700 mm of Hg. At this place, what does and absolute pressure of 380 mm of Hg corresponds to?								
	(A)	320 mm of Hg vacuum	(B)	382 mm of Hg vacuum					
	(C)	62 mm of Hg vacuum	(D)	62 mm of Hg gauge.					
33.	For photoconductors with equal electron and hole mobilities and prefect atomic contacts at the ends, an increase in intensity of optical illumination results in								
	(A)	Change in open circuit voltage	(B)	Change in short circuit current					
	(C)	Decrease in resistance	(D)	Increase in resistance.					
34.	In c	ase of liquids, what is the binary diffus	ion co	efficient proportional to?					
	(A)	Pressure only	(B)	Temperature only					
	(C)	Volume only	(D)	All the above.					
35.	If the temperature of a solid surface changes from 27°c to 627°c, then its emissive power changes which ratio?								
	(A)	•	(C)	27:1 (D) 81:1.					

36.	Con	sider the following sta	atements							
•	Mag	metic susceptibility		•	•					
	(1)	Depends on the nat	ure of the magn	ietic ma	terial					
	(2)	Is not dependent on	the relative pe	rmeabil	ity of the medi	ım				
	(3)	Cannot be determin when placed in a ma		ng the fo	rce exerted on	a magn	etic material			
	(4)	Can be determined	from M-H curve	e						
	Whi	ch of the above statem	nents is/are corr	ect?						
	(A)	1, 2, 3 and 4 (B)	1 only	(C)	1 and 4 only	(D)	2 only.			
37.	*	perature below which	o certain materi		_		called			
	(A)	Curie temperature		(B)	Neel tempera					
	(C)	Wein temperature		(D)	Debye temper	ature.				
38.	In an LC series circuit connected to a dc supply of E volts via a thyristor when it turns off, the voltage that appears across the thyristor is									
	(A)	+ E (B)	+ 2E	(C)	- E	(D)	- 2E.			
39.	Wha	at power would a shor	t shaft. 50 mm	in dian	ieter, transmit	at 400	r n m			
•	(A)	60KW (B)		(C)	40KW		30KW.			
40.		er factor of an altern hanging its	ator driven by	constan	t prime mover	input o	can be changed			
	(A)	Speed		(B)	Load					
	(C)	Field excitation		(D)	Phase sequen	ce.				
41.	Whi	ch of the following is 1	not an electroph	nile?						
	(A)	Br+ (B)	H+	(C)	BF ₃	(D)	NH ₃ .			
42.	(A)	necessary condition for Aldehyde or Ketone	must have an a	-Н						
	(B)	Aldehyde or Ketone								
	(C) (D)	Aldehyde or Ketone None of the above.	must have an 8	-H	•					
43.	Anti	- Markovnikov's addit	tion of HBr is n	ot obser	ved in					
	(A)	propene (B)	1- butane	(C)	2- butane	(D)	2- pentane .			

44 `	The	two reactions involved in	the Robinson	annu	dations are					
	(A)	Hydroboration and oxide	ation			•				
	(B)	Perkin reaction and Mic	hael reaction							
	(C)	Michael reaction and Al	dol condensat	ion						
J	(D)	Oppenauer oxidation an	d Friedal-cra	ft reac	ction.	-				
45.	The	Claisen condensation is o	ften used in r	repai	ing					
	(A)	β -hydroxyl ester		(B)	α- hydroxyl es	ster	,			
-	(C)	γ-keto ester		(D)	β - keto ester.		•			
46.	Whi	ch one of the following bir	nary systems	forms	near ideal solu	ition?				
•	(A)	n -hexane and n-octane		(B)	chloroform an		r ·			
_	(C)	methanol and water		(D)	acetic acid an	d water	•			
47 .	In the	ne UV spectrum of cycloh ne transition of	exenone, the	absor	ption at lambd	a Max-	-215 nm is due			
	(A)	σ to σ^* (B) σ	to n	(C)	π to π^*	(D)	π to n*.			
48.	Whi	ch list below gives only sp	oin active nuc	lei?						
	(A)	- · · · · · · -	I, ¹³ C, ¹⁹ F	(C)	² H, ³⁵ Cl, ¹⁶ O	(D)	³ H, ³² S, ⁷⁹ Br.			
49.	What do expect to observe the ¹H NMR spectrum of chloroethane CH₃CH₂Cl									
	(A)	A doublet and a quartet		(B)	A triplet and	a quart	et			
	(C)	Two doublets		'.(D)	A doublet and a triplet.					
50.	A ¹ HNMR spectrum of compound C contains a singlet, a triplet and a quartet. Which of the following compounds might C be?									
	(A)	CH ₃ CCl ₂ CH ₂ CH ₃		(B)	CH₃CHClCH(Cl_2				
	(C)	CH₃CHClCHClCH₃		(D)	CH ₃ CH ₂ CH ₂ C	HCl_2				
51.	Whi	ch one of acidic auxochroi	nic group?							
	(A)	-OH (B) -N	IO ₂	(C)	-OR	(D)	-NH ₂			
52.		ction of trans-2-phenyl-1 luces	-bromocyclo- _l	oentai	ne on reaction	with	alcoholic KOH			
	(A)	4 – Phenylcyclopentene		(B)	2 – Phenylcyc	lopente	ne			
	(C)	1 – Phenylcyclopentene		(D)	3 – Phenylcyc	lopente	ne.			
53.		ch organic chloro compou tion?	nd shows com	plete	sterochemical i	nversio	n during a SN ²			
	(A)	(CH ₃) ₃ CCl (B) (C	H ₃) ₂ CHCl	(C)	CH ₃ Cl	(D)	(C ₂ H ₅) ₃ CHCl.			

54.	Amo	ong the following	g $comp$	ounds, stronge:	st acid i	S				
:	(A)	C_2H_2	(B)	C_2H_6	(C)	CH₃OH	(D)	$C_6H_{6.}$		
55	The	centre C-atom o	of earb	anion noggagges	,		·			
00.	(A)	Duet of electron		amon possesses	(B)	Octet of electr	ona			
		Sexlet of electr			(D)	None of the ab				
	(0)	Sexiet of electr	ons		(D)	None of the ac	love.	•		
56.	Bak	elite is obtained	by rea	action of pheno	l with					
	(A)	CH₃CHO	(B)	НСНО	(C)	CH ₃ COCH ₃	(D)	CO_2		
57 .	The	most commonly	used	reagent for vulc	canizati	on of natural ru	ıbber is	3		
	(A)			Sulphur	(C)	Graphite		Dry ice.		
	()		(-,	· · ••				,		
58.	The	compound that	can ea	sily break ozon	e molec	cule is				
	(A)	Chlorine	(B)	Oxygen	(C)	Nitrogen	(D)	Argon.		
59.	The	agency to look a	fter tl	ne climate chan	ges and	l for action to cu	ıt greei	nhouse gases i		
	(A)	WHO	(B)	DOE	(C)	UNFCC	(D)	GOI.		
			• .							
60.		world's most ab		i e						
	(A)	Oil	(B)	Coal	(C)	Natural gas	(D)	Methane.		
61.	Which of the following is not a viral disease?									
	(A)	Yellow fever	(B)	Rat fever	(C)	Small pox	(D)	Measles.		
co	M.	· l 3	· 4							
62.		ochondria in Eul			· (C)	14. Id.	(D)	D. 4		
	(A)	Virus	(B)	Bacteria	(C)	Moulds	(D)	Protest.		
63.	-	nheritance of a divible inheritance		e to next gener	ration i	s only possible	throug	gh females, th		
	(A)	Sex-linked	(B)	Mendelian	(C)	Organeller	(D)	Autosomal.		
64.	Soci	ond most affectir	or error	on house gas af	tor CO.	ia				
04.	(A)	Methane	ig grei	CFC	(C)	NOx	(D)	Ozone.		
	(A)	Mentane	(D)	OFC	(0)	NOX	(D)	Ozone.		
65.	Gly	coconjugates on	protei	ns in intra-cellı	ılar me	mbrane are orie	nted to	oward		
	(A)	Cytoplasmic fa	ice		(B)	Lumen				
	(C)	Embedded in r	nembi	rane	(D)	On both sides.				

66.	Antibiotic resistance among bacteria represent										
	(A)	Balancing se			(B)		g selectio	n			
	(C)	Directional s	election	•	(D)						
67.	Acco	ording to five l include	cingdom cla	ssification (of livi	ng organism	, kingdon	n MONERA doe			
	(A)	Archaebacter	ia	10 mg	(B)	Blue-Gree	n Algae	•			
	(C)	Heterotrophic	c bacteria		(D)		_	algae.			
68.	Wha	at is prophage?						· -			
	(A)	λ- phage DNA		,							
	(B)	A transposon		•							
	(C)	Stage of a cell									
	(D)	DNA of tempe		inserted in	to hos	t chromosom	ie.				
69.	An enzyme that phosphorylate protein is known as										
	(A)	Phosphorylase		protein is a	(B)						
	(C)	Protein kinase			(D)	Phosphata Protein red					
70.	F _n	Enzyme that break down fat to monoglycerides is									
10.	Enzy (A)	Amylase	down tat t	o monoglyce							
	(C)	Nuclease			(B)	Carboxype	ptidase				
	(0)	Nuclease			(D)	Lipase.					
71.	In D nucle	In DNA analysis if cytosine constitute 20% and Adenosine constitute 18% of all nucleotides, it must be									
	(A)	Single strande	ed DNA		÷						
	(B)	Double strand	ed DNA				• .				
	(C)	Very short stre	etch of douk	le stranded	DNA						
	(D)	Multi chromos	omal DNA.		•		÷				
72.	When classi	n an inorganic ified as	molecule of	ther than ox	tygen	accepts hyd	rogen the	process can be			
	(A)	Fermentation	•		(B)	Catalysis					
	(C)	Anaerobic resp	oiration		(D)	Aerobic res	piration.				
73.	Ident	ify the Bacteria	al heat shoc	k response i	protei	n from the fo	llowing	•			
		$\mathbf{H}\mathbf{sp}$	(B) Rec.		(C)	Fitz	(D)	Lac7.			
*							\ - /				

74.	When inside of a cell become more negative compared to its resting state, it is said to be									
• •	(A)	Depolarized	•	(B)	Hyper polarized	. •				
	(C)	Electric dysfunction		(D)	Competent.					
7 5.		rage time interval between as Generation Time	4		•	of its off-spring is				
•	(A)	Increases with size of	the animal							
	(B)	Decreases with the size	ze of the anima	1 .						
	(C)	No relationship exists	between size a	and ger	neration time					
	(D)	It has species-specific	relationship.							
76.	Seco	ndary structure of a pr	otein require							
	(A)	, Hydrogen bonding				•				
	(B)	Covalent bonding								
	(C)	Cross-linkages	•							
	(D)	Covalent bonding with	h Van der Waa	ls force	es.	•				
77.	The	organism Helicobacter	pylori is associ	iated w	zith					
	(A)	Diptheria		(B)	Sleeping sickness					
	(C)	Peptic ulcer		(D)	Leprosy.					
78.	DNA	A finger printing techni	que defects the	uniqu	e DNA segments ki	nown as				
	(A)	Consenses sequences								
	(B)	Restriction fragment	length polymor	phism						
	(C)	Methylation pattern		• -		•				
٠.	(D)	Promoter sequences.			•					
				÷	•	•				
79.		otoxins in bacteria are			·					
	(A)	kind of lipopolysaccha		(B)	trans membrane	• •				
	(C)	phospholipase-C anal	ogues	(D)	protein phosphota	ıge.				
80.	In p	olysaccharides, individ	ual monosacch	arides	are links by					
	(A)	Polypeptide bond	* ·	(B)	Glycosidic bond					
•	(C)	Hydrogen bond		(D)	Phosphodiester be	ond.				
81.	The	force excreted by two c	harged particle	es upor	n interaction is defi	ned as				
	(A)	kq/r^2 (B)	k.q1 q2/ r2	(C)		D) ke/r^2 .				

82.	"Ha	rmonic motion" of a simple pendulum	repres	ents the motion that
	(A)	Runs faster	(B)	Happens interruptedly
	(C)	Repeat itself in equal intervals of time	ne (D)	Repeat itself with time.
83.	Qua	ntum confinement in materials are du	ie to th	e reduction in their
	(A)	Crystallinity	(B)	Conductivity
	(C)	Dimensions	(D)	Reflectivity.
84.	Qua	ntum confinement in materials result	s in	
	(A)	Electron emission	(B)	Photon emission
	(C)	Discrete energy levels	(D) .	Energy spectrum.
85.		angle of incidence for which the $= \sin^{-1} (n_2/n_1)$	angle	of refraction is 90° is known as
	(A)	Refraction angle	(B)	Transmission angle
	(C)	Absorption angle	(D)	Critical angle.
86.	Opti	ical dispersion of materials arises due	to the	
	· (A)	Light dependence of refractive index		
٠	(B)	Wavelength dependence of refractive	e index	
	(C)	Frequency dependence		
	(D)	Density dependence.	•	
. 87 .	Gra	ting is aoptical element		
	(A)	Rotating	(B)	Reflective
i.	(C)	Dispersive	(D)	Polarizing.
88.		erding to the right-hand rule if the in		
	(A)	axb (B) a.b	(Ċ)	$\frac{da}{dt} \cdot b$ (D) $a \cdot \frac{db}{dt}$.
89.	The	integral of the path traveling in a clos	sed loop	pis
	(A)	∮2πr dr (B) ∮ A dr	(C)	$\oint_0^1 A \ dr$ (D) $\oint_0^{25} A \ dr$.
90.	The	dimension of electric field is		
	(A)	Force per unit charge (Nc-1)	(B)	Force per unit area (Nc ⁻²)
	(C)	Force per unit metre square (Nm ⁻²)	(D)	Force per unit length (N _L -1).

91,	42 4:	m. Ar = ma den	otes tl	ne ,					
	(A)	Newton's II nd L	aw of	motion	(B)	Newton's Ist La	w of n	notion
	(C)	Newton's III rd I	Law of	motion		D)	Kepler's Law.		
92.	Pow	er (P) of a systen	n is de	efined as					
	(A)	We t	(B)	$\frac{\dot{w}}{t}$	(C)	$\frac{WF}{t}$	(D)	$\frac{Wa}{t}$.
93.		p holds 200g of the water, how							
	(A)	610 J	(B)	600 J	. (C)	625 J	(D)	630 J.
94.	One	Volt of electroni	c pote	ntial is refe	rred as		•		•
•	(A)	Ohm per metre			(B)	Amphere per n	netre	
	(C)	(C) here x resistance				D)	Joules per coul	omb.	
95.		magnitude (E) illel plate capacit		e electric fi	eld gen	era	ted between tw	o oppo	ositely charged
	(A)	$\mathbf{E} = \frac{\theta E}{A}$	(B)	$E = \frac{\sigma}{\varepsilon_o}$	(C)	$\mathbf{E} = \frac{\sigma A}{\varepsilon o}$	(D)	$E = \frac{\sigma v}{\varepsilon_o}$.
96.	The	equivalent capac	itanc	e of two cap	acitors	com	nected in paralle	el is	
	(A)	Q v	(B)	$\frac{Q_1Q_2}{V}$.(C)	$\frac{VQ_1}{Q_2}$	(D)	$\frac{Q_1}{Q_2}$.
97.	The	work done of a c	apacit	or is same a	as the				
	(A)	Energy spend b	y the	capacitor	. (B)	Energy stored	by the	capacitor
	(C)	Voltage of the c	apaci	tor	. (D)	Voltage per un	it time	· .
98.		particle travels be defined as	along	a circular 1	path of	rad	ius"r" then the	speed	of the particle
	(A)	$\frac{2 \pi r}{T}$	(B)	$\frac{2\pi r^2}{T}$. (C)	$\frac{2 \pi r^l}{T}$	(D)	$\frac{2/4 \pi r^2}{T}.$
99.	Indu	ictor is a device t	hat st	ores energy	' in				
	(A)	Electric field			(B)	Lonic field	•	
	(C)	Magnetic field			(D)	Thermal field.	-	
100.	Enti	ropy is a measure	e of		,				

(A) Heat

Energy

(C)

(B)

Randomness

Heat capacity.